概述
目前几乎很多大型网站及应用都是分布式部署的,分布式场景中的数据一致性问题一直是一个比较重要的话题。分布式的CAP理论告诉我们“任何一个分布式系统都无法同时满足一致性(Consistency)、可用性(Availability)和分区容错性(Partition tolerance),最多只能同时满足两项。”所以,很多系统在设计之初就要对这三者做出取舍。在互联网领域的绝大多数的场景中,都需要牺牲强一致性来换取系统的高可用性,系统往往只需要保证“最终一致性”,只要这个最终时间是在用户可以接受的范围内即可。
在很多场景中,我们为了保证数据的最终一致性,需要很多的技术方案来支持,比如分布式事务、分布式锁等。
选用Redis实现分布式锁原因
Redis有很高的性能
Redis命令对此支持较好,实现起来比较方便
在此就不介绍Redis的安装了。
使用命令介绍
SETNX
SETNX key val
当且仅当key不存在时,set一个key为val的字符串,返回1;若key存在,则什么都不做,返回0。
expire
expire key timeout
为key设置一个超时时间,单位为second,超过这个时间锁会自动释放,避免死锁。
delete
delete key
删除key
在使用Redis实现分布式锁的时候,主要就会使用到这三个命令。
实现
使用的是jedis来连接Redis。
实现思想
获取锁的时候,使用setnx加锁,并使用expire命令为锁添加一个超时时间,超过该时间则自动释放锁,锁的value值为一个随机生成的UUID,通过此在释放锁的时候进行判断。
获取锁的时候还设置一个获取的超时时间,若超过这个时间则放弃获取锁。
释放锁的时候,通过UUID判断是不是该锁,若是该锁,则执行delete进行锁释放。
分布式锁的核心代码如下:
import redis.clients.jedis.Jedis; import redis.clients.jedis.JedisPool; import redis.clients.jedis.Transaction; import redis.clients.jedis.exceptions.JedisException; import java.util.List; import java.util.UUID; /** * Created by liuyang on 2017/4/20. */ public class DistributedLock { private final JedisPool jedisPool; public DistributedLock(JedisPool jedisPool) { this.jedisPool = jedisPool; } /** * 加锁 * @param locaName 锁的key * @param acquireTimeout 获取超时时间 * @param timeout 锁的超时时间 * @return 锁标识 */ public String lockWithTimeout(String locaName, long acquireTimeout, long timeout) { Jedis conn = null; String retIdentifier = null; try { // 获取连接 conn = jedisPool.getResource(); // 随机生成一个value String identifier = UUID.randomUUID().toString(); // 锁名,即key值 String lockKey = "lock:" + locaName; // 超时时间,上锁后超过此时间则自动释放锁 int lockExpire = (int)(timeout / 1000); // 获取锁的超时时间,超过这个时间则放弃获取锁 long end = System.currentTimeMillis() + acquireTimeout; while (System.currentTimeMillis() < end) { if (conn.setnx(lockKey, identifier) == 1) { conn.expire(lockKey, lockExpire); // 返回value值,用于释放锁时间确认 retIdentifier = identifier; return retIdentifier; } // 返回-1代表key没有设置超时时间,为key设置一个超时时间 if (conn.ttl(lockKey) == -1) { conn.expire(lockKey, lockExpire); } try { Thread.sleep(10); } catch (InterruptedException e) { Thread.currentThread().interrupt(); } } } catch (JedisException e) { e.printStackTrace(); } finally { if (conn != null) { conn.close(); } } return retIdentifier; } /** * 释放锁 * @param lockName 锁的key * @param identifier 释放锁的标识 * @return */ public boolean releaseLock(String lockName, String identifier) { Jedis conn = null; String lockKey = "lock:" + lockName; boolean retFlag = false; try { conn = jedisPool.getResource(); while (true) { // 监视lock,准备开始事务 conn.watch(lockKey); // 通过前面返回的value值判断是不是该锁,若是该锁,则删除,释放锁 if (identifier.equals(conn.get(lockKey))) { Transaction transaction = conn.multi(); transaction.del(lockKey); List
测试
下面就用一个简单的例子测试刚才实现的分布式锁。
例子中使用50个线程模拟秒杀一个商品,使用--运算符来实现商品减少,从结果有序性就可以看出是否为加锁状态。
模拟秒杀服务,在其中配置了jedis线程池,在初始化的时候传给分布式锁,供其使用。
import redis.clients.jedis.JedisPool; import redis.clients.jedis.JedisPoolConfig; /** * Created by liuyang on 2017/4/20. */ public class Service { private static JedisPool pool = null; static { JedisPoolConfig config = new JedisPoolConfig(); // 设置最大连接数 config.setMaxTotal(200); // 设置最大空闲数 config.setMaxIdle(8); // 设置最大等待时间 config.setMaxWaitMillis(1000 * 100); // 在borrow一个jedis实例时,是否需要验证,若为true,则所有jedis实例均是可用的 config.setTestOnBorrow(true); pool = new JedisPool(config, "127.0.0.1", 6379, 3000); } DistributedLock lock = new DistributedLock(pool); int n = 500; public void seckill() { // 返回锁的value值,供释放锁时候进行判断 String indentifier = lock.lockWithTimeout("resource", 5000, 1000); System.out.println(Thread.currentThread().getName() + "获得了锁"); System.out.println(--n); lock.releaseLock("resource", indentifier); } } // 模拟线程进行秒杀服务 public class ThreadA extends Thread { private Service service; public ThreadA(Service service) { this.service = service; } @Override public void run() { service.seckill(); } } public class Test { public static void main(String[] args) { Service service = new Service(); for (int i = 0; i < 50; i++) { ThreadA threadA = new ThreadA(service); threadA.start(); } } }
结果如下,结果为有序的。
若注释掉使用锁的部分
public void seckill() { // 返回锁的value值,供释放锁时候进行判断 //String indentifier = lock.lockWithTimeout("resource", 5000, 1000); System.out.println(Thread.currentThread().getName() + "获得了锁"); System.out.println(--n); //lock.releaseLock("resource", indentifier); }
从结果可以看出,有一些是异步进行的。
在分布式环境中,对资源进行上锁有时候是很重要的,比如抢购某一资源,这时候使用分布式锁就可以很好地控制资源。
当然,在具体使用中,还需要考虑很多因素,比如超时时间的选取,获取锁时间的选取对并发量都有很大的影响,上述实现的分布式锁也只是一种简单的实现,主要是一种思想。
下一次我会使用zookeeper实现分布式锁,使用zookeeper的可靠性是要大于使用redis实现的分布式锁的,但是相比而言,redis的性能更好。
上面的代码可以在我的GitHub中进行查看。创造与魔法 安卓版v1.0.0750
创造与魔法是一款开放世界手游,在游戏中玩家可探索这个奇妙的世
创造与魔法修改版 最新版v1.0.0750
创造与魔法无限点券版是款探索冒险游戏,该款游戏的操作还是蛮自
战争与文明官方版本 安卓版v1.7.16
战争与文明是一款由上海邮通科技有限公司开发的战争策略游戏,这
迷你世界0元领皮肤无限迷你币版 最新安卓版v1.43.0
迷你世界0元购买皮肤版是这款开放沙盒冒险建造游戏的特殊破解版
创造与魔法无限经验版 安卓版v1.0.0750
创造与魔法无限经验版是款可以改造环境,整个游戏的自由度还是蛮