实例如下所示:
#coding=gbk import numpy as np import tensorflow as tf from tensorflow.python import pywrap_tensorflow checkpoint_path='model.ckpt-5000'#your ckpt path reader=pywrap_tensorflow.NewCheckpointReader(checkpoint_path) var_to_shape_map=reader.get_variable_to_shape_map() alexnet={} alexnet_layer = ['conv1','conv2','conv3','conv4','conv5','fc6','fc7','fc8'] add_info = ['weights','biases'] alexnet={'conv1':[[],[]],'conv2':[[],[]],'conv3':[[],[]],'conv4':[[],[]],'conv5':[[],[]],'fc6':[[],[]],'fc7':[[],[]],'fc8':[[],[]]} for key in var_to_shape_map: #print ("tensor_name",key) str_name = key # 因为模型使用Adam算法优化的,在生成的ckpt中,有Adam后缀的tensor if str_name.find('Adam') > -1: continue print('tensor_name:' , str_name) if str_name.find('/') > -1: names = str_name.split('/') # first layer name and weight, bias layer_name = names[0] layer_add_info = names[1] else: layer_name = str_name layer_add_info = None if layer_add_info == 'weights': alexnet[layer_name][0]=reader.get_tensor(key) elif layer_add_info == 'biases': alexnet[layer_name][1] = reader.get_tensor(key) else: alexnet[layer_name] = reader.get_tensor(key) # save npy np.save('alexnet_pointing04.npy',alexnet) print('save npy over...') #print(alexnet['conv1'][0].shape) #print(alexnet['conv1'][1].shape)
茶杯头甜蜜终章dlc 官方手机版v1.0.0.3
下载火柴人传说暗影格斗内置菜单 最新版v3.0.1
下载荒野乱斗测试服 安卓版v61.10.3
下载荒野乱斗彩虹服 安卓版v61.10.3
下载寒霜启示录 安卓版v1.25.10
寒霜启示录是一款生存模拟游戏,不少玩家可能对于末日都有着自己
末日城堡免广告版 安卓最新版v0.7.1
末日城堡免广告版是一款非常好玩的模拟经营类游戏,内部可以不看
甜蜜人生模拟器 最新版v1.4.5
甜蜜人生模拟器是一款非常好玩的模拟恋爱手游,玩家在这里能够对
武器锻造师内置功能菜单 v10.4
武器锻造师内置菜单版是游戏的破解版本,在该版本中为玩家提供了
开放空间overfield 安卓版v1.0.5
开放空间Overfield是一款箱庭养成经营手游,让你在广阔