本篇文章小编给大家分享一下Python opencv医学处理实现代码示例,文章代码介绍的很详细,小编觉得挺不错的,现在分享给大家供大家参考,有需要的小伙伴们可以来看看。
题目描述
利用opencv或其他工具编写程序实现医学处理。
实现过程
# -*- coding: utf-8 -*- ''' 作者 : 丁毅 开发时间 : 2021/5/9 16:30 ''' import cv2 import numpy as np # 图像细化 def VThin(image, array): rows, cols = image.shape NEXT = 1 for i in range(rows): for j in range(cols): if NEXT == 0: NEXT = 1 else: M = int(image[i, j - 1]) + int(image[i, j]) + int(image[i, j + 1]) if 0 < j < cols - 1 else 1 if image[i, j] == 0 and M != 0: a = [0]*9 for k in range(3): for l in range(3): if -1 < (i - 1 + k) < rows and -1 < (j - 1 + l) < cols and image[i - 1 + k, j - 1 + l] == 255: a[k * 3 + l] = 1 sum = a[0] * 1 + a[1] * 2 + a[2] * 4 + a[3] * 8 + a[5] * 16 + a[6] * 32 + a[7] * 64 + a[8] * 128 image[i, j] = array[sum]*255 if array[sum] == 1: NEXT = 0 return image def HThin(image, array): rows, cols = image.shape NEXT = 1 for j in range(cols): for i in range(rows): if NEXT == 0: NEXT = 1 else: M = int(image[i-1, j]) + int(image[i, j]) + int(image[i+1, j]) if 0 < i < rows-1 else 1 if image[i, j] == 0 and M != 0: a = [0]*9 for k in range(3): for l in range(3): if -1 < (i-1+k) < rows and -1 < (j-1+l) < cols and image[i-1+k, j-1+l] == 255: a[k*3+l] = 1 sum = a[0]*1+a[1]*2+a[2]*4+a[3]*8+a[5]*16+a[6]*32+a[7]*64+a[8]*128 image[i, j] = array[sum]*255 if array[sum] == 1: NEXT = 0 return image array = [0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0] # 显示灰度图 img = cv2.imread(r"C:UserspcDesktopvas0.png",0) cv2.imshow("img1",img) # 自适应阈值分割 img2 = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 17, 4) cv2.imshow('img2', img2) # 图像反色 img3 = cv2.bitwise_not(img2) cv2.imshow("img3", img3) # 图像扩展 img4 = cv2.copyMakeBorder(img3, 1, 1, 1, 1, cv2.BORDER_REFLECT) cv2.imshow("img4", img4) contours, hierarchy = cv2.findContours(img4, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) # 消除小面积 img5 = img4 for i in range(len(contours)): area = cv2.contourArea(contours[i]) if (area < 80) | (area > 10000): cv2.drawContours(img5, [contours[i]], 0, 0, -1) cv2.imshow("img5", img5) num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(img5, connectivity=8, ltype=None) # print(stats) s = sum(stats) img6 = np.ones(img5.shape, np.uint8) * 0 for (i, label) in enumerate(np.unique(labels)): # 如果是背景,忽略 if label == 0: # print("[INFO] label: 0 (background)") continue numPixels = stats[i][-1] div = (stats[i][4]) / s[4] # print(div) # 判断区域是否满足面积要求 if round(div, 3) > 0.002: color = 255 img6[labels == label] = color cv2.imshow("img6", img6) # 图像反色 img7 = cv2.bitwise_not(img6) # 图像细化 for i in range(10): VThin(img7, array) HThin(img7, array) cv2.imshow("img7",img7) # 边缘检测 img8 = cv2.Canny(img6, 80, 255) cv2.imshow("img8", img8) # 使灰度图黑白颠倒 img9 = cv2.bitwise_not(img8) cv2.imshow("img9", img9) cv2.waitKey(0)
运行结果