本篇文章小编给大家分享一下利用Matlab绘制各类特殊图形代码实例,文章代码介绍的很详细,小编觉得挺不错的,现在分享给大家供大家参考,有需要的小伙伴们可以来看看。
Matlab绘图介绍
强大的绘图功能是Matlab的特点之一,Matlab提供了一系列的绘图函数,用户不需要过多的考虑绘图的细节,只需要给出一些基本参数就能得到所需图形,这类函数称为高层绘图函数。此外,Matlab还提供了直接对图形句柄进行操作的低层绘图操作。这类操作将图形的每个图形元素(如坐标轴、曲线、文字等)看做一个独立的对象,系统给每个对象分配一个句柄,可以通过句柄对该图形元素进行操作,而不影响其他部分。
Matlab绘制特殊图形
1. 绘制极坐标图
说明:使用polarplot函数绘制极坐标图,每组数据表示一条闭合曲线,共有20条曲线构成20条封闭同心曲线。
t = linspace(0,2*pi,500); y = 1+0.3*sin(20*t)+0.1*sin(30*t)+0.1*sin(40*t); polarplot(t,y,t,1.1*y,t,1.2*y,t,1.3*y,t,1.4*y,t,1.5*y,t,1.6*y,t,1.7*y,t,1.8*y,t,1.9*y,... t,2.0*y,t,2.1*y,t,2.2*y,t,2.3*y,t,2.4*y,t,2.5*y,t,2.6*y,t,2.7*y,t,2.8*y,t,2.9*y,'linewidth',1.5);
2. 单条曲线绘制分段函数(反比例函数y=1/x)
说明:反比例函数在x接近于0时,趋近于奇异(1/0 趋近于无穷大),使用nan非数对图形进行镂空,可以实现一条曲线绘制y=1/x的整个定义域。
x = linspace(-3,3,500); f = @(x) 1./x; y = f(x); for ii = 1:length(x) if abs(x(ii))<0.03 x(ii) = nan; y(ii) = nan; end end plot(x,y) legend('y=1/x')
3. 正方体内绘制随机分布的颜色片图
说明: 使用plot3绘制正方体12条边,使用fill3函数绘制颜色片,颜色片位置和填充颜色随机生成。
a = 20; b = 20; c = 20; A1 = [0 0 0 a 0 0 a b 0 0 b 0 0 0 0]; A2 = [0 0 c a 0 c a b c 0 b c 0 0 c]; A3 = [0 0 0 0 0 c 0 b c 0 b 0 0 0 0]; A4 = [a 0 0 a 0 c a b c a b 0 a 0 0]; % 绘图 figure hold on plot3(A1(:,1),A1(:,2),A1(:,3),'k'); plot3(A2(:,1),A2(:,2),A2(:,3),'k'); plot3(A3(:,1),A3(:,2),A3(:,3),'k'); plot3(A4(:,1),A4(:,2),A4(:,3),'k'); view(3) XYZ0 = [0 0 0 1 0 0 1 0 1 0 0 1]; for ii = 1:100 p = [rand*(a-2) rand*(b-2) rand*(c-2)]+1; % 球心 X2= p(1) + XYZ0(:,1); Y2 = p(2) + XYZ0(:,2); Z2 = p(3) + XYZ0(:,3); ColorSpec = rand(1,3); fill3( X2,Y2,Z2,ColorSpec ) end
4. 在大圆内随机生成若干互不相交的小圆
说明:先绘制大圆,在大圆内随机生成小圆圆心,判断小圆圆心和其它小圆的距离,如果小圆圆心距离小于直径,说明小圆相交,舍去该小圆。
tic X = []; Y = []; n = 0; while n < 1000 r = rand * (750-5); theta = rand * 2*pi; x0 = r*cos(theta); y0 = r*sin(theta); s = min( (x0-X).^2 + (y0-Y).^2 ); % 最小圆心距离 if s < 10^2 continue; else X = [X;x0]; % 圆心坐标集合 Y = [Y;y0]; n = n +1 % 点数 end end toc alpha = linspace(0,2*pi,100); x = 5*cos(alpha); y = 5*sin(alpha); figure plot( 150*x,150*y,'r' ) hold on for ii = 1:n x0 = X(ii); y0 = Y(ii); plot(x0+x,y0+y,'k') end
5. 在长方体内随机生成若干球体
说明:patch函数绘制长方体和球体表面,并可填充颜色。
x = 100; y = 80; z = 50; theta = linspace(0,2*pi,50); phi = linspace(0,2*pi,50); [theta,phi] = meshgrid(theta,phi); r = 2; X0 = r*cos(phi).*cos(theta); Y0 = r*cos(phi).*sin(theta); Z0 = r*sin(phi); % 绘图 X = [0 x x 0 0 x x 0 0 0 0 0 x x x x 0 x x 0]'; Y = [0 0 y y 0 0 y y 0 y y 0 0 y y 0 y y y y]'; Z = [0 0 0 0 z z z z 0 0 z z 0 0 z z 0 0 z z ]'; figure patch(X,Y,Z,'r'); view(3) hold on for ii = 1:50 p = [rand*(100-4*r) rand*(80-4*r) rand*(50-4*r)]+2*r; % 球心 X2= p(1) + X0; Y2 = p(2) + Y0; Z2 = p(3) + Z0; patch( X2,Y2,Z2,'y' ) end
6. 绘制圆柱体与球体曲面相交,并绘制相交曲线
说明: mesh函数绘制曲面图,求解方程得到交线参数方程,plot3函数绘制三维交线。
%% 曲面1 t = linspace(0,2*pi,200); s = linspace(0,2*pi,200); [t,s] = meshgrid(t,s); x = 2*cos(t); y = 2*sin(t).*cos(s); z = 2*sin(t).*sin(s); figure mesh(x,y,z) %% 曲面2 t2 = linspace(0,2*pi,200); z2 = linspace(-3,3,200); [t2,z2] = meshgrid(t2,z2); x2 = 1 + cos(t2); y2 = sin(t2); hold on mesh(x2,y2,z2) %% 交线 t3 = linspace(0,2*pi,200); y3 = sin(t3); x3 = 1 + cos(t3); z3 = sqrt(4-2*x3); plot3(x3,y3,z3,'r','linewidth',5) hold on plot3(x3,y3,-z3,'r','linewidth',5)
8. 绘制三维抛物曲面
说明:使用nan非数对图形进行镂空
x = -20:0.1:20; y = -20:0.1:20; [X,Y] = meshgrid(x,y); p = 0.2; q = 0.1; Z = X.^2/(2*p) + Y.^2/(2*q); Z = (Z<=500) .* Z + ((Z>500)-1) ./ ((Z>500)-1); % 图形镂空 mesh(X,Y,Z)
9. 抛物曲面随参数变化形成动画
说明:每个步长内动态更新绘制三维曲面,形成动画效果。
x = linspace(-1,1,20); y = linspace(-1,1,20); [X,Y] = meshgrid(x,y); figure a = 1; Z = a.*X.^2 + Y.^2; h = surf(X,Y,Z); zlim([0,15]) for a = 1:0.1:10 Z = a.*X.^2 + Y.^2; set(h,'zdata',Z); drawnow pause(0.1) end
10. 使用不同频率的正弦波合成方波
说明:傅里叶级数,利用不同频率的正弦波合成方波,三角函数项数越多,合成方波越精确。
t=0:0.000001:1; f1=6*sin(10*pi*t)/pi; f2=6*sin(10*pi*t)/pi+2*sin(30*pi*t)/pi; f3=6*sin(10*pi*t)/pi+2*sin(30*pi*t)/pi+6*sin(50*pi*t)/(5*pi); %% 循环段 N = 10; % 点数 f4 = 0; % 初始值 for ii = 1:N f4 = f4 + 3*2*sin((2*ii-1)*10*pi*t)/pi/(2*ii-1); end figure subplot(2,2,1),plot(t,f1) subplot(2,2,2),plot(t,f2) subplot(2,2,3),plot(t,f3) subplot(2,2,4),plot(t,f4)