Pandas自定义选项option设置代码实例

作者:袖梨 2022-06-25

本篇文章小编给大家分享一下Pandas自定义选项option设置代码实例,文章代码介绍的很详细,小编觉得挺不错的,现在分享给大家供大家参考,有需要的小伙伴们可以来看看。

常用选项

pd.options.display 可以控制展示选项,比如设置最大展示行数:

In [1]: import pandas as pd

In [2]: pd.options.display.max_rows
Out[2]: 15

In [3]: pd.options.display.max_rows = 999

In [4]: pd.options.display.max_rows
Out[4]: 999

除此之外,pd还有4个相关的方法来对option进行修改:

get_option() / set_option() - get/set 单个option的值

reset_option() - 重设某个option的值到默认值

describe_option() - 打印某个option的值

option_context() - 在代码片段中执行某些option的更改

如下所示:

In [5]: pd.get_option("display.max_rows")
Out[5]: 999

In [6]: pd.set_option("display.max_rows", 101)

In [7]: pd.get_option("display.max_rows")
Out[7]: 101

In [8]: pd.set_option("max_r", 102)

In [9]: pd.get_option("display.max_rows")
Out[9]: 102

get/set 选项

pd.get_option 和 pd.set_option 可以用来获取和修改特定的option:

In [11]: pd.get_option("mode.sim_interactive")
Out[11]: False

In [12]: pd.set_option("mode.sim_interactive", True)

In [13]: pd.get_option("mode.sim_interactive")
Out[13]: True

使用 reset_option 来重置:

In [14]: pd.get_option("display.max_rows")
Out[14]: 60

In [15]: pd.set_option("display.max_rows", 999)

In [16]: pd.get_option("display.max_rows")
Out[16]: 999

In [17]: pd.reset_option("display.max_rows")

In [18]: pd.get_option("display.max_rows")
Out[18]: 60

使用正则表达式可以重置多条option:

In [19]: pd.reset_option("^display")

option_context 在代码环境中修改option,代码结束之后,option会被还原:

In [20]: with pd.option_context("display.max_rows", 10, "display.max_columns", 5):
   ....:     print(pd.get_option("display.max_rows"))
   ....:     print(pd.get_option("display.max_columns"))
   ....: 
10
5

In [21]: print(pd.get_option("display.max_rows"))
60

In [22]: print(pd.get_option("display.max_columns"))
0

经常使用的选项

下面我们看一些经常使用选项的例子:

最大展示行数

display.max_rows 和 display.max_columns 可以设置最大展示行数和列数:

In [23]: df = pd.DataFrame(np.random.randn(7, 2))

In [24]: pd.set_option("max_rows", 7)

In [25]: df
Out[25]: 
          0         1
0  0.469112 -0.282863
1 -1.509059 -1.135632
2  1.212112 -0.173215
3  0.119209 -1.044236
4 -0.861849 -2.104569
5 -0.494929  1.071804
6  0.721555 -0.706771

In [26]: pd.set_option("max_rows", 5)

In [27]: df
Out[27]: 
           0         1
0   0.469112 -0.282863
1  -1.509059 -1.135632
..       ...       ...
5  -0.494929  1.071804
6   0.721555 -0.706771

[7 rows x 2 columns]

超出数据展示

display.large_repr 可以选择对于超出的行或者列的展示行为,可以是truncated frame:

In [43]: df = pd.DataFrame(np.random.randn(10, 10))

In [44]: pd.set_option("max_rows", 5)

In [45]: pd.set_option("large_repr", "truncate")

In [46]: df
Out[46]: 
           0         1         2         3         4         5         6         7         8         9
0  -0.954208  1.462696 -1.743161 -0.826591 -0.345352  1.314232  0.690579  0.995761  2.396780  0.014871
1   3.357427 -0.317441 -1.236269  0.896171 -0.487602 -0.082240 -2.182937  0.380396  0.084844  0.432390
..       ...       ...       ...       ...       ...       ...       ...       ...       ...       ...
8  -0.303421 -0.858447  0.306996 -0.028665  0.384316  1.574159  1.588931  0.476720  0.473424 -0.242861
9  -0.014805 -0.284319  0.650776 -1.461665 -1.137707 -0.891060 -0.693921  1.613616  0.464000  0.227371

[10 rows x 10 columns]

也可以是统计信息:

In [47]: pd.set_option("large_repr", "info")

In [48]: df
Out[48]: 

RangeIndex: 10 entries, 0 to 9
Data columns (total 10 columns):
 #   Column  Non-Null Count  Dtype  
---  ------  --------------  -----  
 0   0       10 non-null     float64
 1   1       10 non-null     float64
 2   2       10 non-null     float64
 3   3       10 non-null     float64
 4   4       10 non-null     float64
 5   5       10 non-null     float64
 6   6       10 non-null     float64
 7   7       10 non-null     float64
 8   8       10 non-null     float64
 9   9       10 non-null     float64
dtypes: float64(10)
memory usage: 928.0 bytes

最大列的宽度

display.max_colwidth 用来设置最大列的宽度。
In [51]: df = pd.DataFrame(
   ....:     np.array(
   ....:         [
   ....:             ["foo", "bar", "bim", "uncomfortably long string"],
   ....:             ["horse", "cow", "banana", "apple"],
   ....:         ]
   ....:     )
   ....: )
   ....: 

In [52]: pd.set_option("max_colwidth", 40)

In [53]: df
Out[53]: 
       0    1       2                          3
0    foo  bar     bim  uncomfortably long string
1  horse  cow  banana                      apple

In [54]: pd.set_option("max_colwidth", 6)

In [55]: df
Out[55]: 
       0    1      2      3
0    foo  bar    bim  un...
1  horse  cow  ba...  apple

显示精度

display.precision 可以设置显示的精度:

In [70]: df = pd.DataFrame(np.random.randn(5, 5))

In [71]: pd.set_option("precision", 7)

In [72]: df
Out[72]: 
           0          1          2          3          4
0 -1.1506406 -0.7983341 -0.5576966  0.3813531  1.3371217
1 -1.5310949  1.3314582 -0.5713290 -0.0266708 -1.0856630
2 -1.1147378 -0.0582158 -0.4867681  1.6851483  0.1125723
3 -1.4953086  0.8984347 -0.1482168 -1.5960698  0.1596530
4  0.2621358  0.0362196  0.1847350 -0.2550694 -0.2710197

零转换的门槛

display.chop_threshold 可以设置将Series或者DF中数据展示为0的门槛:

In [75]: df = pd.DataFrame(np.random.randn(6, 6))

In [76]: pd.set_option("chop_threshold", 0)

In [77]: df
Out[77]: 
        0       1       2       3       4       5
0  1.2884  0.2946 -1.1658  0.8470 -0.6856  0.6091
1 -0.3040  0.6256 -0.0593  0.2497  1.1039 -1.0875
2  1.9980 -0.2445  0.1362  0.8863 -1.3507 -0.8863
3 -1.0133  1.9209 -0.3882 -2.3144  0.6655  0.4026
4  0.3996 -1.7660  0.8504  0.3881  0.9923  0.7441
5 -0.7398 -1.0549 -0.1796  0.6396  1.5850  1.9067

In [78]: pd.set_option("chop_threshold", 0.5)

In [79]: df
Out[79]: 
        0       1       2       3       4       5
0  1.2884  0.0000 -1.1658  0.8470 -0.6856  0.6091
1  0.0000  0.6256  0.0000  0.0000  1.1039 -1.0875
2  1.9980  0.0000  0.0000  0.8863 -1.3507 -0.8863
3 -1.0133  1.9209  0.0000 -2.3144  0.6655  0.0000
4  0.0000 -1.7660  0.8504  0.0000  0.9923  0.7441
5 -0.7398 -1.0549  0.0000  0.6396  1.5850  1.9067

上例中,绝对值< 0.5 的都会被展示为0 。

列头的对齐方向

display.colheader_justify 可以修改列头部文字的对齐方向:

In [81]: df = pd.DataFrame(
   ....:     np.array([np.random.randn(6), np.random.randint(1, 9, 6) * 0.1, np.zeros(6)]).T,
   ....:     columns=["A", "B", "C"],
   ....:     dtype="float",
   ....: )
   ....: 

In [82]: pd.set_option("colheader_justify", "right")

In [83]: df
Out[83]: 
        A    B    C
0  0.1040  0.1  0.0
1  0.1741  0.5  0.0
2 -0.4395  0.4  0.0
3 -0.7413  0.8  0.0
4 -0.0797  0.4  0.0
5 -0.9229  0.3  0.0

In [84]: pd.set_option("colheader_justify", "left")

In [85]: df
Out[85]: 
   A       B    C  
0  0.1040  0.1  0.0
1  0.1741  0.5  0.0
2 -0.4395  0.4  0.0
3 -0.7413  0.8  0.0
4 -0.0797  0.4  0.0
5 -0.9229  0.3  0.0

相关文章

精彩推荐