本篇文章小编给大家分享一下Python K-means实现简单图像聚类代码示例,文章代码介绍的很详细,小编觉得挺不错的,现在分享给大家供大家参考,有需要的小伙伴们可以来看看。
第一个版本的直接实现:
import os import numpy as np from sklearn.cluster import KMeans import cv2 from imutils import build_montages import matplotlib.image as imgplt image_path = [] all_images = [] images = os.listdir('./images') for image_name in images: image_path.append('./images/' + image_name) for path in image_path: image = imgplt.imread(path) image = image.reshape(-1, ) all_images.append(image) clt = KMeans(n_clusters=2) clt.fit(all_images) labelIDs = np.unique(clt.labels_) for labelID in labelIDs: idxs = np.where(clt.labels_ == labelID)[0] idxs = np.random.choice(idxs, size=min(25, len(idxs)), replace=False) show_box = [] for i in idxs: image = cv2.imread(image_path[i]) image = cv2.resize(image, (96, 96)) show_box.append(image) montage = build_montages(show_box, (96, 96), (5, 5))[0] title = "Type {}".format(labelID) cv2.imshow(title, montage) cv2.waitKey(0)
主要需要注意的问题是对K-Means原理的理解。K-means做的是对向量的聚类,也就是说,假设要处理的是224×224×3的RGB图像,那么就得先将其转为1维的向量。在上面的做法里,我们是直接对其展平:
image = image.reshape(-1, )
那么这么做的缺陷也是十分明显的。例如,对于两张一模一样的图像,我们将前者向左平移一个像素。这么做下来后两张图像在感官上几乎没有任何区别,但由于整体平移会导致两者的图像矩阵逐像素比较的结果差异巨大。以橘子汽车聚类为例,实验结果如下:
可以看到结果是比较差的。因此,我们进行改进,利用ResNet-50进行图像特征的提取(embedding),在特征的基础上聚类而非直接在像素上聚类,代码如下:
import os import numpy as np from sklearn.cluster import KMeans import cv2 from imutils import build_montages import torch.nn as nn import torchvision.models as models from PIL import Image from torchvision import transforms class Net(nn.Module): def __init__(self): super(Net, self).__init__() resnet50 = models.resnet50(pretrained=True) self.resnet = nn.Sequential(resnet50.conv1, resnet50.bn1, resnet50.relu, resnet50.maxpool, resnet50.layer1, resnet50.layer2, resnet50.layer3, resnet50.layer4) def forward(self, x): x = self.resnet(x) return x net = Net().eval() image_path = [] all_images = [] images = os.listdir('./images') for image_name in images: image_path.append('./images/' + image_name) for path in image_path: image = Image.open(path).convert('RGB') image = transforms.Resize([224,244])(image) image = transforms.ToTensor()(image) image = image.unsqueeze(0) image = net(image) image = image.reshape(-1, ) all_images.append(image.detach().numpy()) clt = KMeans(n_clusters=2) clt.fit(all_images) labelIDs = np.unique(clt.labels_) for labelID in labelIDs: idxs = np.where(clt.labels_ == labelID)[0] idxs = np.random.choice(idxs, size=min(25, len(idxs)), replace=False) show_box = [] for i in idxs: image = cv2.imread(image_path[i]) image = cv2.resize(image, (96, 96)) show_box.append(image) montage = build_montages(show_box, (96, 96), (5, 5))[0] title = "Type {}".format(labelID) cv2.imshow(title, montage) cv2.waitKey(0)
可以发现结果明显改善:
茶杯头甜蜜终章dlc 官方手机版v1.0.0.3
下载火柴人传说暗影格斗内置菜单 最新版v3.0.1
下载荒野乱斗测试服 安卓版v61.10.3
下载荒野乱斗彩虹服 安卓版v61.10.3
下载寒霜启示录 安卓版v1.25.10
寒霜启示录是一款生存模拟游戏,不少玩家可能对于末日都有着自己
末日城堡免广告版 安卓最新版v0.7.1
末日城堡免广告版是一款非常好玩的模拟经营类游戏,内部可以不看
甜蜜人生模拟器 最新版v1.4.5
甜蜜人生模拟器是一款非常好玩的模拟恋爱手游,玩家在这里能够对
武器锻造师内置功能菜单 v10.4
武器锻造师内置菜单版是游戏的破解版本,在该版本中为玩家提供了
开放空间overfield 安卓版v1.0.5
开放空间Overfield是一款箱庭养成经营手游,让你在广阔