本篇文章小编给大家分享一下Python生成器与迭代器代码示例解析,文章代码介绍的很详细,小编觉得挺不错的,现在分享给大家供大家参考,有需要的小伙伴们可以来看看。
1、生成器
现在可以通过生成器来直接创建一个列表,但是由于内存的限制,列表的容量肯定是有限的,如果我们需要一个包含几百个元素的列表,但是每次访问的时候只访问其中的几个,那剩下的元素不使用就很浪费内存空间。
这个时候生成器(Generator)就起到了作用,他是按照某种算法不断生成新的数据,直到满足某一个指定的条件结束
得到生成式的方式有如下几种:
通过列表生成式来得到生成器,示例代码如下:
g = (x for x in range(10)) # 将列表生成列的[]改变成为() # 打印其类型 print(type(g)) ## 调用其元素 print(g.__next__()) # 0 print(g.__next__()) # 1 print(g.__next__()) # 2 print(g.__next__()) # 3 print(g.__next__()) # 4 # 使用.__next__的方式调用 print(next(g)) # 5 print(next(g)) # 6 print(next(g)) # 7 print(next(g)) # 8 print(next(g)) # 9 # 使用next()的方法调用 print(next(g)) # 当数据调用不到时会报出错误 StopIteration
需要多少调用多少,不调用的不会生成,也就不会占用内存空间,可以使用循环结构来按照需要来调用
g = (x for x in range(10)) # 将列表生成列的[]改变成为() skip = True # 判断条件 count = 0 # 调用次数 while skip: count += 1 # 循环一次+1 print(next(g)) if count > 9: break # 跳出循环
使用函数借助yield关键字来完成一个生成器,生成斐波那契数列的前20个数,示例代码如下:
def fun(length): a, b = 0, 1 for _ in range(length): a, b = b, a + b yield a fib = fun(20) print(type(fib)) ## 打印类型 count = 0 while count < 20: # 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 print(next(fib), "", end="") count += 1
流程如下:
在执行过程中,遇到yield关键字就会暂停执行,下次调用则继续从上次暂停的位置继续执行,因为是一个循环语句,所有会直接跳到for语句
如果在调用yield,需要给它传值,就要使用.send()方法了。
示例代码如下:
def fun(num): n = 0 for i in range(num + 1): n += i ret = yield n print(f"这是+到{ret}的第{i + 1} 次") g = fun(3) print(g.send(None)) print(g.send('3')) print(g.send('3')) print(g.send('3')) ''' ---输出结果--- 0 这是+到 3 的第 1 次 1 这是+到 3 的第 2 次 3 这是+到 3 的第 3 次 6 '''
send的加入可以使生成器更加灵活,但是需要注意的是第一次调用生成器的send()方法时,参数只能为None,否则会抛出异常。当然也可以在调用send()方法之前先调用一次next()方法,目的是让生成器先进入yield表达式。
2、迭代器与可迭代的生成器
可迭代的对象有生成器、元组、列表、集合、字典和字符串等
通过collections的Iterable函数结合isinstance(object, classinfo)来判断一个对象时不是可迭代的对象
迭代是访问集合元素的一种方式。迭代器是一个可以记住遍历的位置的对象。迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退。很生成器也是迭代器。
可以被next ()函数调用并不断返回下一个值的对象称为迭代器:Iterator,可以使用isinstance()判断一个对象是否是Iterator对象:
注意:可迭代的不一定是生成器,但是生成器一定第可迭代的。
把元组、列表、集合、字典和字符串等Iterable变成Iterator可以使用iter()函数
Iterable和Iterator****的区别是Iterable是可以作为for循环对象的统称;而Iterator对象需要被next()函数调用才不断返回下一个数据,直到没有数据时抛出StopIteration错误,而在这之前是不会知道其长度的,所以Iterator的计算是惰性的,只有next()函数叫他才会返回结果,Iterator甚至可以表示一个无限大的数据流,例如全体自然数。
from collections.abc import Iterable, Iterator a = [1, 2, 3] b = {1, 2, 3} c = (1, 2, 3) d = "123" e = 123 f = (x for x in range(5)) # 打印数据类型 print(type(a)) #print(type(b)) # print(type(c)) # print(type(d)) # print(type(e)) # print(type(f)) # print("-" * 20) # 打印是否为可迭代对象 print(isinstance(a, Iterable)) # True print(isinstance(b, Iterable)) # True print(isinstance(c, Iterable)) # True print(isinstance(d, Iterable)) # True print(isinstance(e, Iterable)) # False print(isinstance(f, Iterable)) # True print("-" * 20) # 除了字符串都是可迭代对象 # 打印是否是迭代器 print(isinstance(a, Iterator)) # False print(isinstance(b, Iterator)) # False print(isinstance(c, Iterator)) # False print(isinstance(d, Iterator)) # False print(isinstance(f, Iterator)) # True # 只有f(生成器)是迭代器 print("-" * 20) # 通过iter()将可迭代转换为迭代器 print(isinstance(iter(a), Iterator)) # True print(isinstance(iter(b), Iterator)) # True print(isinstance(iter(c), Iterator)) # True print(isinstance(iter(d), Iterator)) # True