本篇文章小编给大家分享一下Python实现数字图像处理染色体计数代码示例,文中代码介绍的很详细,小编觉得挺不错的,现在分享给大家供大家参考,有需要的小伙伴们可以来看看。
一、实验内容
对于下面这幅图像,编程实现染色体计数,并附简要处理流程说明。
二、实验步骤
1.中值滤波
2.图像二值化
3.膨胀图像
4.腐蚀图像
5.计算光影背景
6.移除背景
7.检测染色体
三、代码
import cv2 import numpy as np # 计算光影背景 def calculateLightPattern(img4): h, w = img4.shape[0], img4.shape[1] img5 = cv2.blur(img4, (int(w/3), int(w/3))) return img5 # 移除背景 def removeLight(img4, img5, method): if method == 1: img4_32 = np.float32(img4) img5_32 = np.float32(img5) ratio = img4_32 / img5_32 ratio[ratio > 1] = 1 aux = 1 - ratio # 按比例转换为8bit格式 aux = aux * 255 aux = np.uint8(aux) else: aux = img5 - img4 return aux def ConnectedComponents(aux): num_objects, labels = cv2.connectedComponents(aux) if num_objects < 2: print("connectedComponents未检测到染色体") return else: print("connectedComponents检测到染色体数量为:", num_objects - 1) output = np.zeros((aux.shape[0], aux.shape[1], 3), np.uint8) for i in range(1, num_objects): mask = labels == i output[:, :, 0][mask] = np.random.randint(0, 255) output[:, :, 1][mask] = np.random.randint(0, 255) output[:, :, 2][mask] = np.random.randint(0, 255) return output def ConnectedComponentsStats(aux): num_objects, labels, status, centroids = cv2.connectedComponentsWithStats(aux) if num_objects < 2: print("connectedComponentsWithStats未检测到染色体") return else: print("connectedComponentsWithStats检测到染色体数量为:", num_objects - 1) output = np.zeros((aux.shape[0], aux.shape[1], 3), np.uint8) for i in range(1, num_objects): mask = labels == i output[:, :, 0][mask] = np.random.randint(0, 255) output[:, :, 1][mask] = np.random.randint(0, 255) output[:, :, 2][mask] = np.random.randint(0, 255) return output def FindContours(aux): contours, hierarchy = cv2.findContours(aux, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if len(contours) == 0: print("findContours未检测到染色体") return else: print("findContours检测到染色体数量为:", len(contours)) output = np.zeros((aux.shape[0], aux.shape[1], 3), np.uint8) for i in range(len(contours)): cv2.drawContours( output, contours, i, (np.random.randint(0, 255), np.random.randint(0, 255), np.random.randint(0, 255)), 2) return output # 读取图片 img = cv2.imread('img.png', 0) pre_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # 二值化函数 # 第一步:中值滤波 # 中值滤波 img1 = cv2.medianBlur(img, 3) # 显示并保存图片 cv2.imshow('gray', img) cv2.imshow('medianBlur', img1) cv2.imwrite('medianBlur.jpg', img1) # 第二步:图像二值化 # 图像二值化 ret, img2 = cv2.threshold(img1, 140, 255, 0, img1) # 二值化函数 # 显示并保存图片 cv2.imshow('threshold', img2) cv2.imwrite('threshold.jpg', img2) # 第三步:膨胀图像 dilate_kernel = np.ones((3, 3), np.uint8) img3 = cv2.dilate(img2, dilate_kernel) # 显示并保存图片 cv2.imshow('dilate', img3) cv2.imwrite('dilate.jpg', img3) # 第四步:腐蚀图像 erode_kernel = np.ones((7, 7), np.uint8) img4 = cv2.erode(img3, erode_kernel) # 显示并保存图片 cv2.imshow('erode', img4) cv2.imwrite('erode.jpg', img4) # 第五步:计算光影背景 img5 = calculateLightPattern(img4) # 显示并保存图片 cv2.imshow('LightPattern', img5) cv2.imwrite('LightPattern.jpg', img5) # 第六步:移除背景 aux = removeLight(img4, img5, 1) # 显示并保存图片 cv2.imshow('removeLight', aux) cv2.imwrite('removeLight.jpg', aux) # 第七步:检测轮廓 output1 = ConnectedComponents(aux) output2 = ConnectedComponentsStats(aux) output3 = FindContours(aux) # 显示并保存图片 cv2.imshow('connectedComponents', output1) cv2.imwrite('connectedComponents.jpg', output1) cv2.imshow('connectedComponentsWithStats', output2) cv2.imwrite('connectedComponentsWithStats.jpg', output2) cv2.imshow('findContours', output3) cv2.imwrite('findContours.jpg', output3) cv2.waitKey(0)
四、结果
1.中值滤波
2.图像二值化
3.膨胀图像
4.腐蚀图像
5.计算光影背景
6.移除背景
7.检测染色体
(1)connectedComponents.jpg
(2)connectedComponentsWithStats.jpg
(3)findContours.jpg
染色体个数为46
敢达决战官方正版 安卓版v6.7.9
下载敢达决战 安卓版v6.7.9
下载像素火影骨架佐助 (Perseverance Fire Shadow)手机版v1.16
下载要塞英雄 安卓版v33.20.0-39082670-Android
下载梦想城镇vivo最新版本 安卓版v12.0.1
梦想城镇vivo版是这款卡通风模拟经营类手游的渠道服版本,玩
怦然心动的瞬间 安卓版v1.0
怦然心动的瞬间是一款真人向的恋爱互动游戏,在游戏中玩家将扮演
曼尼汉堡店游戏 安卓版v1.0.3
曼尼汉堡店是一款非常好玩的精品恐怖类型冒险游戏,在这款游戏中
现代总统模拟器去广告版 安卓版v1.0.46
现代总统模拟器是一款休闲养成类游戏,可能对于不少的玩家来说都
现代总统模拟器付费完整版 安卓版v1.0.46
现代总统模拟器高级版在商店是需要付费的,相对于普通版本,高级