作者:Mutlis
CSDN & 阿里云 & 知乎 等平台优质作者,擅长Oracle & MySQL等主流数据库系统的维护和管理等
对于 MySQL 5.6 以及之前的版本来说,查询优化器就像是一个黑盒子一样,你只能通过EXPLAIN
语句查看到最后优化器决定使用的执行计划,却无法知道它为什么做这个决策。
这对于一部分喜欢刨根问底的⼩伙伴来说简直是灾难:“我就觉得使用其他的执行方案⽐EXPLAIN
输出的这种方案强,凭什么优化器做的决定和我想的不一样呢?”这篇文章主要介绍使用optimizer trace
查看优化器生成执行计划的整个过程。
在 MySQL 5.6 以及之后的版本中,设计 MySQL 的大叔贴⼼的为这部分小伙伴提出了一个optimizer trace
的功能,这个功能可以让我们方便的查看优化器生成执行计划的整个过程,这个功能的开启与关闭由系统变量optimizer_trace
决定,我们看一下:
mysql> show variables like 'optimizer_trace';+-----------------+--------------------------+| Variable_name | Value |+-----------------+--------------------------+| optimizer_trace | enabled=off,one_line=off |+-----------------+--------------------------+1 row in set (0.01 sec)
可以看到enabled
值为off
,表明这个功能默认是关闭的。
小提示:
one_line
的值是控制输出格式的,如果为on
那么所有输出都将在一行中展示,不适合⼈阅读,所以我们就保持其默认值为off
吧。
如果想打开这个功能,必须⾸先把enabled
的值改为on
,就像这样:
mysql> SET optimizer_trace="enabled=on";Query OK, 0 rows affected (0.00 sec)
然后我们就可以输入我们想要查看优化过程的查询语句,当该查询语句执行完成后,就可以到information_schema
数据库下的OPTIMIZER_TRACE
表中查看完整的优化过程。
这个OPTIMIZER_TRACE
表有 4 个列,分别是:
QUERY
:表示我们查询的语句;TRACE
:表示优化过程的 JSON 格式⽂本;MISSING_BYTES_BEYOND_MAX_MEM_SIZE
:由于优化过程可能会输出很多,如果超过某个限制时,多余的⽂本将不会被显示,这个字段展示了被忽略的⽂本字节数;INSUFFICIENT_PRIVILEGES
:表示是否没有权限查看优化过程,默认值是 0,只有某些特殊情况下才会是 1,我们暂时不关心这个字段的值。步骤一:打开 optimizer trace 功能 (默认情况下它是关闭的)。
mysql> SET optimizer_trace="enabled=on";Query OK, 0 rows affected (0.01 sec)
步骤二:输入查询语句。
SELECT ...;
步骤三:从optimizer_trace
表中查看上一个查询的优化过程。
SELECT * FROM information_schema.OPTIMIZER_TRACE;
步骤四:可能你还要观察其他语句执行的优化过程,重复上边的第 2、3步。
步骤五:当你停⽌查看语句的优化过程时,把 optimizer trace 功能关闭。
mysql> SET optimizer_trace="enabled=off";Query OK, 0 rows affected (0.01 sec)
现在我们有一个搜索条件比较多的查询语句,它的执行计划如下:
mysql> EXPLAIN SELECT * FROM s1 WHERE key1 > 'z' AND key2 < 1000000 AND key3 IN ('aa', 'bb', 'cb') AND common_field = 'abc';+----+-------------+-------+------------+-------+----------------------------+----------+---------+------+------+----------+------------------------------------+| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |+----+-------------+-------+------------+-------+----------------------------+----------+---------+------+------+----------+------------------------------------+| 1 | SIMPLE | s1 | NULL | range | idx_key2,idx_key1,idx_key3 | idx_key1 | 403 | NULL | 1 | 5.00 | Using index condition; Using where |+----+-------------+-------+------------+-------+----------------------------+----------+---------+------+------+----------+------------------------------------+1 row in set, 1 warning (0.00 sec)
可以看到该查询可能使用到的索引有3个,那么为什么优化器最终选择了idx_key1
而不选择其他的索引或者直接全表扫描呢?这时候就可以通过otpimzer trace
功能来查看优化器的具体工作过程:
mysql> SET optimizer_trace="enabled=on";Query OK, 0 rows affected (0.00 sec)mysql> SELECT * FROM s1 WHERE key1 > 'z' AND key2 < 1000000 AND key3 IN ('aa', 'bb', 'cb') AND common_field = 'abc';Empty set (0.00 sec)mysql> SELECT * FROM information_schema.OPTIMIZER_TRACEG
MySQL 可能会在之后的版本中添加更多的优化过程信息。不过杂乱之中其实还是蛮有规律的,优化过程大致分为了三个阶段:
prepare 阶段optimize 阶段execute 阶段我们所说的基于成本的优化主要集中在optimize
阶段,对于单表查询来说,我们主要关注optimize
阶段的"rows_estimation"
这个过程。这个过程深入分析了对单表查询的各种执行方案的成本,对于多表连接查询来说,我们更多需要关注"considered_execution_plans"
这个过程,这个过程里会写明各种不同的连接方式所对应的成本。反正优化器最终会选择成本最低的那种方案来作为最终的执行计划,也就是我们使用EXPLAIN
语句所展现出的那种方案。
最后,我们为感兴趣的小伙伴展示一下通过查询OPTIMIZER_TRACE
表得到的输出(我使用#
后跟随注释的形式为大家解释了优化过程中的一些比较重要的点,建议用电脑屏幕观看):
*************************** 1. row ***************************# 分析的查询语句是什么QUERY: SELECT * FROM s1 WHERE key1 > 'z' AND key2 < 1000000 AND key3 IN ('aa', 'bb', 'cb') AND common_field = 'abc'# 优化的具体过程TRACE: { "steps": [ { "join_preparation": { # prepare阶段 "select#": 1, "steps": [ { "IN_uses_bisection": true }, { "expanded_query": "/* select#1 */ select `s1`.`id` AS `id`,`s1`.`key1` AS `key1`,`s1`.`key2` AS `key2`,`s1`.`key3` AS `key3`,`s1`.`key_part1` AS `key_part1`,`s1`.`key_part2` AS `key_part2`,`s1`.`key_part3` AS `key_part3`,`s1`.`common_field` AS `common_field` from `s1` where ((`s1`.`key1` > 'z') and (`s1`.`key2` < 1000000) and (`s1`.`key3` in ('aa','bb','cb')) and (`s1`.`common_field` = 'abc'))" } ] } }, { "join_optimization": { # optimize阶段 "select#": 1, "steps": [ { "condition_processing": { # 处理搜索条件 "condition": "WHERE", # 原始搜索条件 "original_condition": "((`s1`.`key1` > 'z') and (`s1`.`key2` < 1000000) and (`s1`.`key3` in ('aa','bb','cb')) and (`s1`.`common_field` = 'abc'))", "steps": [ { # 等值传递转换 "transformation": "equality_propagation", "resulting_condition": "((`s1`.`key1` > 'z') and (`s1`.`key2` < 1000000) and (`s1`.`key3` in ('aa','bb','cb')) and multiple equal('abc', `s1`.`common_field`))" }, { # 常量传递转换 "transformation": "constant_propagation", "resulting_condition": "((`s1`.`key1` > 'z') and (`s1`.`key2` < 1000000) and (`s1`.`key3` in ('aa','bb','cb')) and multiple equal('abc', `s1`.`common_field`))" }, { # 去除没用的条件 "transformation": "trivial_condition_removal", "resulting_condition": "((`s1`.`key1` > 'z') and (`s1`.`key2` < 1000000) and (`s1`.`key3` in ('aa','bb','cb')) and multiple equal('abc', `s1`.`common_field`))" } ] } }, { # 替换虚拟生成列 "substitute_generated_columns": { } }, { # 表的依赖信息 "table_dependencies": [ { "table": "`s1`", "row_may_be_null": false, "map_bit": 0, "depends_on_map_bits": [ ] } ] }, { "ref_optimizer_key_uses": [ ] }, { # 预估不同单表访问方法的访问成本 "rows_estimation": [ { "table": "`s1`", "range_analysis": { "table_scan": { "rows": 20250, "cost": 2051.35 }, # 分析可能使用的索引 "potential_range_indexes": [ { "index": "PRIMARY", # 主键不可用 "usable": false, "cause": "not_applicable" }, { "index": "idx_key2",# idx_key2可能被使用 "usable": true, "key_parts": [ "key2" ] }, { "index": "idx_key1", # idx_key1可能被使用 "usable": true, "key_parts": [ "key1", "id" ] }, { "index": "idx_key3", # idx_key3可能被使用 "usable": true, "key_parts": [ "key3", "id" ] }, { "index": "idx_key_part", # idx_key_part不可用 "usable": false, "cause": "not_applicable" } ], "setup_range_conditions": [ ], "group_index_range": { "chosen": false, "cause": "not_group_by_or_distinct" }, "skip_scan_range": { "potential_skip_scan_indexes": [ { "index": "idx_key2", "usable": false, "cause": "query_references_nonkey_column" }, { "index": "idx_key1", "usable": false, "cause": "query_references_nonkey_column" }, { "index": "idx_key3", "usable": false, "cause": "query_references_nonkey_column" } ] }, # 分析各种可能使用的索引的成本 "analyzing_range_alternatives": { "range_scan_alternatives": [ { # 使用idx_key2的成本分析 "index": "idx_key2", # 使用idx_key2的范围区间 "ranges": [ "NULL < key2 < 1000000" ], "index_dives_for_eq_ranges": true,# 是否使用index dive "rowid_ordered": false,# 使用该索引获取的记录是否按照主键排序 "using_mrr": false, # 是否使用mrr "index_only": false, # 是否是索引覆盖访问 "in_memory": 1, "rows": 10125,# 使用该索引获取的记录条数 "cost": 3544.01,# 使用该索引的成本 "chosen": false, # 使用该索引的成本 "cause": "cost" # 因为成本太大所以不选择该索引 }, { # 使用idx_key1的成本分析 "index": "idx_key1", # 使用idx_key1的范围区间 "ranges": [ "'z' < key1" ], "index_dives_for_eq_ranges": true,# 同上 "rowid_ordered": false,# 同上 "using_mrr": false,# 同上 "index_only": false,# 同上 "in_memory": 1, "rows": 1,# 同上 "cost": 0.61,# 同上 "chosen": true# 是否选择该索引 }, { # 使用idx_key3的成本分析 "index": "idx_key3", # 使用idx_key3的范围区间 "ranges": [ "key3 = 'aa'", "key3 = 'bb'", "key3 = 'cb'" ], "index_dives_for_eq_ranges": true,# 同上 "rowid_ordered": false,# 同上 "using_mrr": false,# 同上 "index_only": false,# 同上 "in_memory": 1, "rows": 3,# 同上 "cost": 1.81,# 同上 "chosen": false,# 同上 "cause": "cost"# 同上 } ], # 分析使用索引合并的成本 "analyzing_roworder_intersect": { "usable": false, "cause": "too_few_roworder_scans" } }, # 对于上述单表查询s1最优的访问方法 "chosen_range_access_summary": { "range_access_plan": { "type": "range_scan", "index": "idx_key1", "rows": 1, "ranges": [ "'z' < key1" ] }, "rows_for_plan": 1, "cost_for_plan": 0.61, "chosen": true } } } ] }, { # 分析各种可能的执行计划 #(对多表查询这可能有很多种不同的方案,单表查询的方案上边已经分析过了,直接选取idx_key1就好) "considered_execution_plans": [ { "plan_prefix": [ ], "table": "`s1`", "best_access_path": { "considered_access_paths": [ { "rows_to_scan": 1, "access_type": "range", "range_details": { "used_index": "idx_key1" }, "resulting_rows": 1, "cost": 0.71, "chosen": true } ] }, "condition_filtering_pct": 100, "rows_for_plan": 1, "cost_for_plan": 0.71, "chosen": true } ] }, { "attaching_conditions_to_tables": { "original_condition": "((`s1`.`common_field` = 'abc') and (`s1`.`key1` > 'z') and (`s1`.`key2` < 1000000) and (`s1`.`key3` in ('aa','bb','cb')))", "attached_conditions_computation": [ ], "attached_conditions_summary": [ { "table": "`s1`", "attached": "((`s1`.`common_field` = 'abc') and (`s1`.`key1` > 'z') and (`s1`.`key2` < 1000000) and (`s1`.`key3` in ('aa','bb','cb')))" } ] } }, { # 尝试给查询添加一些其他的查询条件 "finalizing_table_conditions": [ { "table": "`s1`", "original_table_condition": "((`s1`.`common_field` = 'abc') and (`s1`.`key1` > 'z') and (`s1`.`key2` < 1000000) and (`s1`.`key3` in ('aa','bb','cb')))", "final_table_condition ": "((`s1`.`common_field` = 'abc') and (`s1`.`key1` > 'z') and (`s1`.`key2` < 1000000) and (`s1`.`key3` in ('aa','bb','cb')))" } ] }, { # 再稍稍的改进一下执行计划 "refine_plan": [ { "table": "`s1`", "pushed_index_condition": "(`s1`.`key1` > 'z')", "table_condition_attached": "((`s1`.`common_field` = 'abc') and (`s1`.`key2` < 1000000) and (`s1`.`key3` in ('aa','bb','cb')))" } ] } ] } }, { "join_execution": { # execute阶段 "select#": 1, "steps": [ ] } } ]}# 因优化过程文本太多而丢弃的文本字节大小,值为0时表示并没有丢弃MISSING_BYTES_BEYOND_MAX_MEM_SIZE: 0# 权限字段INSUFFICIENT_PRIVILEGES: 01 row in set (0.01 sec)ERROR: No query specified
大家看到这个输出的第一感觉就是这文本也太多了点吧,其实这只是优化器执行过程中的一小部分。
如果有小伙伴对使用EXPLAIN
语句展示出的对某个查询的执行计划很不理解,大家可以尝试使用optimizer trace
功能来详细了解每一种执行方案对应的成本,相信这个功能能让大家更深入的了解 MySQL 查询优化器。
爱可生开源社区的 SQLE 是一款面向数据库使用者和管理者,支持多场景审核,支持标准化上线流程,原生支持 MySQL 审核且数据库类型可扩展的 SQL 审核工具。
我最强舞者 (I, Best Dancer)安卓版v8
我最强舞者(I, Best Dancer)是一款休闲放置类手
迷你世界国服版本2024 v1.43.0
迷你世界国服版本2024是一款自由度非常高的沙盒游戏,玩法和
烹饪乐园 安卓版v1.23.6
烹饪乐园(Cooking Town)是一款非常好玩的餐厅模拟
迷你世界小米服 最新安卓版v1.43.0
迷你世界小米版是由迷你玩科技开发的休闲模拟经营类游戏。此版本
布娃娃Sprunki沙盒 安卓版v0.0.1
布娃娃Sprunki沙盒是一个非常有趣的沙盒游戏,复古简约的